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Interpretation of Scientific or Mathematical Concepts:

Cognitive Issues and Instructional Implications

F. Reif

Department of Physics and School of Education
University of California at Berkeley

Scientific and mathematical concepts are significantly different from everyday
concepts and are notoriously difficult to learn. It is shown that particular
instances of such concepts can be identified or generated by different possible
modes of concept interpretation. Some of these modes use formally explicit
knowledge and thought processes, others rely on various kinds of compiled
knowledge. Each mode has distinctive consequences in terms of attainable
precision, likely errors, and ease of use. A combination of such modes can be
exploited to formulate an'idealrmodel for interpreting scientific concepts so as --
to achieve both reliable scientific effectiveness and cognitive processing
efficiency. This model can be compared with the actual concept interpretations
of expert scientists or novice students. All the preceding remarks are illustrated
in the specific case of the physics concept "' acceleration'. The discussion
elucidates both cognitive and metacognitive reasons why the learning of
scientific or mathematical concepts is difficult. It also suggests instructional
methods for teaching such concepts more effectively. --
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Interpretation of scientific concepts 2

1. COGNITIVE PROCESSING OF SCIENTIFIC CONCEPTS

1.1 Interest of Cognitive Studies of Scientific Conceots
There are several reasons why it is both intellectually interesting and

* practically important to achieve an improved understanding of the underlying
thought processes involved in using and learning scientific concepts. (Unless
stated otherwise, the following discussion uses the phrase "scientific concepts"
to include also mathematical concepts.)

Scientific Impogrtance. Numerous special concepts (such as
"acceleration", "force", "electric field", "derivative", ... ) are introduced in science
or mathematics as the basic building blocks of conceptual structures designed
to explain or predict a wide range of phenomena. Such basic concepts play,
therefore, a crucially important role in all of science. In particular, the ability to
interpret and use such concepts is an essential prerequisite for solving
problems in scientific fields.

Indeed, many students' major problem-solving difficulties can be traced to
deficiencies in their abilities to interpret the needed basic concepts. Unless
adequately remedied, such conceptual deficiencies remain a bottleneck
vitiating attempts to teach students useful general strategies for solving scientific
or mathematical problems (Reif & Heller, 1982; Reif 1983; Schoenfeld, 1985). S

Cognitive Interest., The thought processes required to interpret scientific
concepts are significantly different from those needed to deal with everyday
concepts. They also involve particular complexities and considerable amounts
of special ancillary knowledge (Reif, 1985). Hence it is of interest to understand S

these thought processes in greater detail and to elucidate scientists' knowledge 4.
that is often largely tacit.

Educational Importance. Science and mathematics courses, at the pre-
college or college level, devote a large fraction of their time teaching basic
concepts. (introductory courses, in particular, often introduce many new
concepts in quick succession and spend relatively little time applying them
extensively.) Such courses have well-deserved reputations of being "tough"
since many students experience considerable difficulties learning the basic
concepts of mathematics, physics, chemistry, and similar quantitative sciences.
Instructors and textbook authors face thus formidable challenges.

There is considerable evidence that these challenges are not being
adequately met and that common teaching methods are often far less effective
and efficient than one might naively hope. Students' acquired knowledge of
scientific concepts remains all too frequently diffuse and largely nominal, so that
students are unable to interpret and apply these concepts flexibly in various
contexts. Indeed, numerous recent investigations have revealed that many
students, despite seemingly good performance in their prior science courses,
often exhibit pre-scientific conceptions or gross scientific misconceptions, even

ZS



Interpretation of scientific concepts 3

when dealing with quite elementary situations (Caramazza, McCloskey, &
Green, 1981; Clement, 1982; Cohen, Eylon, & Ganiel, 1983; Halloun &
Hestenes, 1985 a, 1985 b; McCloskey, Caramazza, & Green, 1980; McDermott,
1984; Trowbridge & McDermott, 1980, 1981; Viennot, 1979).

Limitations of past work. The last several years have seen many
investigations of students' naive conceptions, preconceptions, and
misconceptions in various scientific domains (such as mechanics, electricity,
heat and temperature, ...). These investigations include those cited in the
preceding paragraph, some books (Driver, Guesne, & Tiberghien, 1985; West
& Pines, 1985; Lesh & Landau, 1984), and work reported at several
international conferences (Helms & Novak, 1983; Centre National de la
Recherche Scientifique, 1984). Hence there now exist rich data about students'
interpretation and use of various scientific concepts.

However, with a few exceptions (e.g., diSessa, 1983; Reif, 1985), most of
this work is descriptive rather than analytical. Thus it yields only relatively few
theoretical insights into the underlying thought processes accounting for the
observed results. Correspondingly, it provides also rather little specific
guidance about how to teach scientific concepts more effectively.

1.2 ScoDe of Present Work

The work discussed in this paper is an attempt to transcend some of the
limitations of past work by focusing less on what particular conceptions or
misconceptions are exhibited by students or experts, and more on how scientific
concepts are interpreted and used. In particular, the central interest is to
understand better the underlying thought processes and forms of knowledge
used to interpret and apply scientific concepts - and then to exploit the
resulting insights to design principled instructional methods for teaching
scientific concepts more effectively.

To limit the scope of this undertaking to manageable proportions, the
present study focuses on the following kinds of concepts and uses of them:

Concepts of Interest. The concepts of primary interest are basic scientific
or mathematical concepts of the kind commonly taught in high-school or college
courses. These concepts are either entities or properties.

Entity conceots denote either particular entities or, more commonly, generic
entities (i.e., "variables"). For example, "the sun" is a particular entity, while "a
triangle is a generic entity (i.e., any member of the class of three-sided
polygons).

Prooertv conceots are generic concepts which are used to describe other ."
concepts (and are thus functions of these other concepts considered as
independent variables). For example, "area" is a property concept describing
the independent variable "surface" [i.e., a number, with units of (length)2. is

S.. ** '5,*.%



Interpretation of scientific concepts 4

associated with every surface]. "Ratio" is a property describing two independent
variables ("numerator" and "denominator") having numerical values.
"Acceleration" is a property describing three independent variables, i.e., a
"particle", a "reference frame" (needed for the specification of position), and the
"time". Such property concepts are more complex than entity concepts since
they describe functional relationships. But, for that very reason, they are also
most important in all scientific work.

Concept uses of Interest. The most fundamental use of a concept is the
"basic interpretation" needed to idntf or cnstruct particular instances of the
concept in various possible situations. The central interest in this paper is
focused on the underlying knowledge and thought processes needed to
perform such interpretation tasks.

Examples of concept identification tasks include the following: For an entity,
like "triangle", identifying whether a particular diagram represents a triangle or
not. For a property, like "acceleration", determining whether a specified value of

r. the acceleration of an object has been properly identified or not.

Examples of concept cntuction tasks include the following: For an entity,
like "triangle", drawing a particular triangle. For a property, like "acceleration",
finding the value of the acceleration of a car moving in a specified way.

The discussion of this paper deals primarily with such ba~ interpretations
of scientific concepts. It does not examine more sophisticated interpretation or
problem-solving tasks involving scientific concepts, nor the principles or
broader conceptual frameworks relating various concepts. But, as will become
amply apparent, even basic concept-interpretation tasks are far from trivial, may
require complex thought processes, and can lead to many kinds of errors and
misinterpretations. Furthermore, such basic interpretation skills are essential
prerequisites for using scientific concepts and for solving scientific problems.

1.3 Central Questions

An attempt to understand how scientific or mathematical concepts are
interpreted leads to the following central questions about the underlying
cognitive processes:

Possible modes of conceot interpretation. A person's interpretation
of a concept involves the retrieval of some pertinent "concept-specification
knowledge", stored in the person's mind, and some "interpretation process"
whereby this knowledge is applied in a particular situation of interest. However,
a particular concept may be interpreted in various possible ways, depending on
what specific kind of stored knowledge is retrieved and how it is processed.
Hence there arise the following questions:

*What are some of the major possible ways (or "modes") of interpreting a
scientific or mathematical concept'?
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* For each such mode, what is the nature of the stored concept-specification

knowledge which is retrieved to interpret the concept? And what cognitive
processes are used to apply this knowledge?

* What are the consequences of each such mode?
* Processing characteristics. (How speedily can the concept be

interpreted with this mode? What mental effort is required?)
* Output characteristics. (What is the quality of the resulting

interpretation, e.g., its degree of unambiguity, precision, consistency,
generality, etc. ? What kinds of errors are likely to ensue?

* Resulting capabilities. (How easy is it to detect and correct errors of
interpretation? How readily can the interpretation mode be applied to
deal with unfamiliar situations or to learn new concepts?)

(The preceding questions are not meant to deal with all pertinent issues. For
example, concept interpretation may also be affected by a person's general
knowledge, e.g., by his or her mental models about the world or metacognitive
knowledge about the nature of scientific concepts.)

Interpretation modes of particular Interest. Some modes of concept
interpretation are of special interest and lead to the following particular
questions:

* What modes of scientific concept interpretation are optimal in satisfying

scientific requirements and facilitating the requisite human thoughtprocesses?
* What modes of scientific concept interpretation are commonly used by

expert scientists?* What modes of scientific concept interpretation are used by novice

students who have relatively little experience with science or
mathematics?

* What are the similarities and differences between these modes of
scientific concept interpretation and the ways that lay concepts are
interpreted in everyday life?

Implfcations for learning and teaching. Answers to the preceding
questions provide a basis for addressing the more complex questions involved
in the a isition of scientific concepts:

* What are effective ways of learning scientific or mathematical concepts?
* How can such learning be promoted by effective and efficient instructional

methods for teaching such concepts?

1.4 Issues Addressed in this Paper. O

The preceding questions constitute an ambitious research agenda and the
following pages attempt merely to begin answering some of these questions. In
particular, Section 2 identifies some important modes of concept interpretation,
illustrates them with specific examples, and points out some of their
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consequences. Section 3 builds on this discussion to outline how scientific
concepts may be interpreted in ways that are both scientifically effective and
cognitively efficient. Section 4 illustrates all these general issues in greater
detail for the particular physics concept "acceleration". Finally, Section 5
examines some of the particular difficulties of scientific concepts, outlines some
broader issues for future investigation, and suggests instructional methods for
teaching scientific concepts more effectively.

2. MODES OF CONCEPT INTERPRETATION

This section identifies and examines several possible modes of interpreting
scientific concepts. As mentioned previously, each mode is characterized by
what kind of concept-specific knowledge is stored and how it is processed to
interpret the concept. Furthermore, the use of each mode entails some
distinctive consequences.

The five concept-interpretation modes discussed in the following paragraphs
rely on increasingly coherent and explicit knowledge. The distinctions between
these modes are not absolutely sharp. There are also variations within each
mode (e.g., depending on the extent to which the interpretation processes are
deliberately performed or rely on more automatic perceptual processes.)
Finally, it is possible, and sometimes advantageous, to use several
interpretation modes in combination.

The pdmary purpose of this section is to identify and compare these various
concept-interpretation modes, rather than to examine any one in great depth.
Accordingly, the following paragraphs describe briefly each mode, illustrate it
with a few examples, and discuss some of its major consequences. (The
examples are taken from data gathered in interviews, from some written
assessment questions, and from some detailed protocols of subjects tape-
recorded while trying to answer questions about the concept "acceleration".)

2.1 Use of Fragmentary Knowledge

In this mode the scientific concept is interpreted by retrieving from memory
some fragmentary knowledge associated with the concept. (This knowledge is
ordinarily =o a definition of the concept.) The retrieval may involve either an
automatic recognition process, or sometimes more deliberate search, to match
this fragmentary knowledge with some features of a specific situation.

The following examples illustrate this mode of concept interpretation.

Example 1: Speed of ball. After being hit by a bat, a baseball travels along
the trajectory illustrated in Figure 1. What is the speed of the ball at the highest
point of its trajectory?

....................
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Insert Figure 1 about here

* . Some novice physics students (and some non-physics faculty members)
respond to this question by saying that the speed there is zero. Some, when
then merely asked "What is your definition of 'speed'?", say something about it
being change of position with time - and then spontaneously realize that their
previous answer was incorrect and that the speed is =~ zero.

In this instance, a question about the familiar concept "speed" is promptly
answered by invoking some associated knowledge fragment about speed. (This
may be bit of familiar knowledge about the speed of a vertically thrown ball at its
highest point, or perhaps merely something cued by perceptual attention
focused selectively on motion along the vertical direction.) This answer is given
despite the fact that it violates common sense and the everyday meaning of
"speed". Note that the word "speed* in the question triggers IM. attempt to
invoke any explicit definition of "speed", until the person is urged by the
experimenter to do so.

Example 2: Angle between vectors. The arrows in Figure 2a represent
three vectors A, B, and C, of equal magnitudes, whose sum is zero. What then is
the angle between the vectors A and B ?

Insert Figure 2 about here

Many students, including those quite familiar with vectors, answer promptly
that the angle is 60*. They do this quickly, without~ ever invoking any explicit
definition of "angle between two vectors". They merely retrieve the familiar
knowledge fragment that any angle in an equilateral triangle is 60'. Their answer
is wrong. (As shown later, the correct answer, 120% is straightforwardly obtained
by a more explicit mode of interpreting the concept "angle between two
vectors".)

Dicsin The concept-interpretation mode illustrated in the preceding
examples relies on various compiled knowledge elements which have become
associated with a concept as a result of past experience - and which can often
be retrieved nearly automatically in response to various cues provided by a
given situation. The use of such compiled knowledge makes interpretation of a
concept quick and effortless.

4On the other hand, such stored knowledge about a concept is fragmentary
and incoherent, like much of everyday knowledge (diSessa, in press).
Furthermore, this knowledge may be invoked by responding selectively to some
salient features of a given situation, while ignoring others of potential relevance.
Thus there is considerable vagueness and variability about what stored
knowledge elements get invoked and about what situational features are
heeded. As a result, concept interpretations based on the use of such
fragmentary knowledge can often be inconsistent, context-dependent, and not
reliably generalizable beyond previously encountered cases. Ambiguity and

7........................
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0 vagueness are common since there are no good mechanisms ensuring fine
discriminations. Interpretation errors occur thus quite frequently, particularly
when the scientific concept is applied in somewhat unfamiliar situations.

2.2 Use of Standard Cases

This mode of concept interpretation uses knowledge stored in memory about
certain important special cases of the concept. These cases are then used as
" standard cases" that provide bases of comparison for interpreting other
instances of the concept. [The utility of specially identified standard examples in
mathematics has been discussed by Rissland (Michener, 1978; Rissland,
1 985).]

The process used to interpret the concept in a particular situation consists
then of (1) the retrieval of an appropriate standard case, and (2) a comparison
used to match the given situation to this standard case. The comparison may
involve either perceptual recognition processes or more explicit uses of
analogy. (The matching to the standard case is thus usually partial rather than
exact.) Sometimes the comparison may be a complex process involving
several successive steps (e.g.,it may involve problem solving to transform a
given situation to one closer to a standard case, matching this transformed
situation to the standard, and then transforming back to the original situation.)

Example 3: Resistors in parallel. When s 'tudents are asked whether the
redistors R, and R2 are connnected "in parallel" in the three situations illustrated
in Figure 3, all say that they are in parallel in Figure 3a; some say that the are fljin
parallel in Figure 3b; and many say that they aM in parallel in Figure 3c.

Insert Figure 3 about here

Figure 3a is the conventional standard diagram used to illustrate resistors
connected in parallel. Students apparently answer the questions by comparing
all situations with this standard case. It is then easy to understand the students'
answers since Figure 3b looks perceptually different from Figure 3a, while Figure
3c looks quite similar.

Most of the students' answers are actually wrong. As shown later, a more
explicit mode of interpreting the concept "parallel connection" leads to the
conclusion that the resistors are connected in parallel in Figure 3b, but =I in
Figure 3c.

Example 4: Como~onent vector. What is the component vector of the
vector A along the direction i ? Most students answer this question easily when
the question is asked about the situation in Figure 4a. But they have difficulties,
or answer incorrectly, when the situation is that in Figure 4b.

r.7 Insert Figure 4 about here



R, R, R,

R2 R2

(a) (b) (c)

Figure 3

Different connections of two resistors

(and also of two batteries in diagram c).
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Figure 4

Component vector of a vector A along a direction I.
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The reasons are quite clear. Students remember compiled knowledge about
the special standard cases where the direction of a component vector is either
horizontal (as in Figure 4c) or vertical. The situation of Figure 4b is then
troublesome because the direction I, along which the component vector is to be
found, is at an odd angle. Indeed, it is fairly common to see students who
physically rotate the piece of paper, with the diagram of Figure 4b, until I is
horizontal. These students interpret the concept "component vector" by using
auxiliary rotations to obtain a transformed situation which can then be directly
compared with the familiar standard case of Figure 4c.

Discussion: Comparisons with a few carefully identified standard cases
may be sufficient to interpret a concept in many instances. Indeed, a single
standard case may sometimes be prototypical of the entire domain of instances
of a concept (as Figure 3a is for the concept "parallel connection"). Standard
cases need not even be consciously explicit. The interpretation becomes then
similar to the prototype comparisons used to specify entity concepts in everyday
life (Rosch 1975, 1978) or to categorize some concepts in computer science
(Adelson, 1985).

When instances of interest match known standard cases fairly closely, the
concept interpretation process can be quick and effortless, often relying on
automatic recognition or easy analogical comparison. Furthermore, the
availability of well-identified standard cases helps to specify the particular
knowledge to be retrieved for concept interpretation (i.e., it provides more
explicit guidance for concept interpretation than interpretation based on less
well specified fragmentary knowledge of the kind discussed in Section 2.1).

However, the criteria for determining the degree of match between such a
standard case and a specific situation are often implicit or only vaguely
specified. Hence concept interpretation based on standard cases can also be
ambiguous and imprecise, nor can it deal reliably with instances far removed
from the standard cases. In particular, inadequately specified compari;son
processes can easily lead to various discrimination errors. For example,
important discriminations may not be made because significant features are not
heeded (as illustrated by student responses to Figure 3c). Conversely,
inappropriate discriminations may be made which are irrelevant to the definition
of a concept (as illustrated by student responses to Figure 3b).

2.3 Use of Classified Tvles of Cases

This interpretation mode is an extension of the preceding one, but involves a
partial or complete classification of the domain of concept instances into
relatively few distinct types of cases. Sometimes this classification may be
expressed in the form of explicit rules. Interpreting the concept in a particular
instance involves then (1) retrieving the classification scheme, and (2) matching
the given instance to fit one of the existing types.
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Example S: Acceleration. Most novice students know the characteristics of
.acceleration" for some of the following possible types of motion: Straight-line

* motion with constant, increasing, or decreasing speed; and circular motion with
constant speed. For instance, the last type of case can be described by the
explicit rule "If a particle moves around a circle with constant speed, its
acceleration is directed toward the center".

A more complete classification would comprise knowledge about the
characteristics of the acceleration for gll types of cases, i.e., for motion along a
straight line with constant, increasing, or decreasing speed; and also for motion
along any curved path with constant, increasing, or decreasing speed.

Discussion: A good classification into types of cases allows concept
interpretation that is quick and requires little mental effort. If the distinct types
are well-specified, the interpretation can also be fairly unambiguous and
precise. Indeed, classification can provide a powerful basis for problem solving
(Clancey, 1985).

Difficulties arise if the classification is incomplete. For then there are
concept instances which cannot be interpreted, except by uncertain analogies
to known types of cases. Another obvious source of difficulty occurs when the
information in the typology is erroneous. For example, one of the subjects
studied in our protocols answered many questions about "acceleration" by
using his knowledge about various types of cases. But his knowledge included
explicitly the incorrect rule that the acceleration is zero in the case where the
speed of a particle is zero.

Even if a classification includes all types of cases, it lacks the degree of
coherence of other concept-interpretation modes (discussed later) which
encompass all cases in a more unified way. This lack of coherence reduces the
ability to make general inferences and can result in special kinds of errors.

Example 6: Incorrect inference about acceleration. "If the speed of a
particle at some instant is zero, can its acceleration be zero?* In one of our
protocols the subject answered this question by successively examining the
acceleration for various possible cases of motion along straight lines and curves.
He made correct statements about several difficult cases, but forgot to consider
the simplest case where a stationary particle remains at rest. This failure to
examine exhaustively all possible cases led him to the incorrect conclusion that
the acceleration cannot be zero. (By contrast, appeal to a general definition of
acceleration would have been much less laborious and would have easily led to
the correct answer.)

Example 7: Area. Science and engineering students in introductory college
physics courses have dealt with the concept of "area* since elementary school.
But their knowledge of the concept involves predominantly familiarity with the
formulas for finding the areas of various types of geometrical figures (e.g.,
rectangles, parallellograms, triangles, circles, ...). It often does =~ include a more
unifying conception of area (e.g., the number of little squares needed to cover a
surface). As a result, such students often cannot make inferences about the
areas of unfamiliar figures, about the areas of three-dimensional surfaces (e.g.,

................................................
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the area of a person's skin), or about scaling properties (e.g., how would the area
of a surface change if all its linear dimensions were three times as large?).

2.4 Use of Feature Specification

This mode of concept interpretation relies on stored knowledge defining a
concept by an explicit specification of its characterizing features. The process of
interpreting the concept in any particular instance then involves the following
major steps: (1) Invoking the stored feature-specification knowledge. (2)
Describing this knowledge in sufficient detail. (3) Devising a procedure for
using this knowledge to identify or construct the concept. (4) Implementing this
procedure in the particular instance of interest.

Some of these steps (particularly the first) are sufficiently simple that they
may be implemented implicitly without conscious processing. However, the
third step can be complex since it requires translating a feature-specification
into a procedure for identifying or constructing the concept. Idenfljying. an
instance of the concept requires merely a procedure for checking that all
specified features are present. But cntucting an instance of the concept can
be much more difficult, since one must then devise a procedure for generating
an instance satisfying all constraints imposed by the feature specification.
(indeed, in mathematics one can sometimes prove the existence of concepts
which one does =~ know how to construct.)

The following examples illustrate feature specifications used to define some
of the concepts already exemplified previously.

Example 8: Resistors In garallel. Two resistors are said to be connected
"in parallel" if one terminal of the first is directly connected to one terminal of the
second, and if the other terminal of the first is directly connected to the other
terminal of the second. (By checking these features it becomes apparent why
the resistors in Figure 3b aM connected in parallel, and why those in Figure 3c are

g~jbecause of the presence of intervening batteries.)

Example 9: Angle between vectors. The "angle between two vectors" is
the angle (between 0' and 180') enclosed by the arrows that represent these
vectors and emanate from the same point. (Accordingly, the angle between the
vectors A and B in Figure 2a is the 120* angle shown in Figure 2b.)

Examnle 10: Component vector. The "component vector of a vector A
along a direction i" is that particular vector, parallel to 1, which yields the original
vector when it is added to another vector perpendicular to I. (This definition is
consistent with Figure 4c.)

Dicsin A feature specification can be used to define a concept
unambiguously and precisely, as well as with the generality needed to specify it
throughout its entire domain of applicability. (This is why mathematical and
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scientific concepts are often defined by feature specifications.) Furthermore, a
feature specification can define a concept in a very compact way. However, this
compact specification can also be quite opaque (as may perhaps be apparent
from Examples 9 and 10). Thus it may be quite unclear how to translate such a
feature specification into a procedure for identifying or constructing the concept.

Interpretation errors can arise either because of defects in the feature
specification itself, or because of defects in the process interpreting this
specification.

Defects in the feature specification can occur if this specification is
insufficiently complete to specify the concept unambiguously. They can also
arise, in more subtle ways, if the feature specification is somehow inconsistent.
Indeed, in mathematics one may need to prove that a particular concept can
actually be defined in a manner consistent with the logical structure of the
domain. In a science, one must ensure not only logical consistency, but also
consistency with observable phenomena and the underlying laws of nature.
For example, one of Einstein's major contributions was his insight that the
concept "time between two events at different places" can not be defined
consistently in an absolute way, but only relative to some specified observers.
(inconsistencies in a feature specification often become apparent only when
one tries to use it to devise an actual procedure for identifying or constructing
the concept.)

Even if the feature specification of a concept is flawless and well-known,
errors may arise because the interpretation process is faulty. Thus a person
may never invoke his or her available specification knowledge, may describe it
improperly when trying to elaborate it, may not translate it properly into a
procedure for identifying the concept, or may make mistakes in trying to
implement such a procedure. All these kinds of errors are observed among
novice students.

2.5 Use of Procedural Specification

In this mode the stored definitional knowledge about a concept is an explicit
prcdr specifying how to identify or construct the concept. (The specification
knowledge, unlike in the case of feature specification, is thus procedural rather
than declarative.) The process of interpreting the concept in any particular
instance then involves the following major steps: (1) Invoking the stored
knowledge about the specification procedure. (2) Describing this procedure in
sufficient detail. (3) Implementing this procedure in the particular instance of
interest. l

A procedural specificlation of a concept may sometimes merely translate its
feature specification into a procedure for identifying or constructing the concept.
However, this procedure can then be stored as part of the remembered
specification knowledge (rather than having to be generated by problem solving
during the interpretation process). The advantages are that the concept
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specification becomes thereby more explicit and its interpretation more
straightforward.

The following are examples of procedural specifications of concepts
* previously defined by feature specifications in Examples 9 and 10. These

procedural definitions are significantly easier to understand and interpret.

Example 11:* Angl. between vectors. The major steps of the procedure
specifying this concept are the following: (1) Draw the arrows, representing the
two vectors, so that they start from the same point. (2) Identify the angle
(between 0* and 180') enclosed by these arrows. Call it 'the angle between the
vectors".

Example 12: Comoonent vector. The major steps of the procedure
specifying this concept are the following and are illustrated in Figure 4c: (1)
Consider the arrow representing the vector A of interest. (2) From the beginning
of this arrow, draw a line parallel to the direction I of interest. (3) From the end of
this arrow, draw a line perpendicular to A. (4) Draw the arrow f rom the beginning
of A to the intersection point of these two lines. The vector represented by this
arrow is called "the component vector of A along r".

Because this procedural specification is explicit and general, it is as easily
applied to find the component vector in the situation of Figure 4b as in that of
Figure 4a. Interpretation of the concept *component vector" by means of this
procedural specification leads thus to consequences distinctly different from
Example 4 which relied on comparisons with standard cases.N

Discussion: A procedural specification provides the most explicit and
detailed specification of a concept. It can be made unambiguous and precise,
and can ensure both generality and consistency. This is why procedural
specifications ("operational definitions") are very useful in scientific work.

A procedural specification spells out the actual prcs required to identify
or construct a concept. Hence a concept can be interpreted more
straightforwardly, with appreciably less problem solving, than would be required
by a feature specification which leaves this process unspecified. Significant
time and mental effort may, neverthelesss, be required to implement a
procedural specification in an explicit and systematic manner. Furthermore, the
explicit details delineated by a procedural specification may obscure important
general characteristics made apparent by a more compact feature specification.
(More metaphorically, attention focused on all the individual trees may make it
more difficult to see some features of the forest.)

Use of a procedural specification can lead to errors either because of
defects in the procedural specification or in the interpretation process. Defects
of the first kind may appear if the procedural specification itself is somehow
ambiguous, imprecise, incomplete, or inconsistent. Defects of the second kind
may be caused by failures to invoke the procedural specification, to describe its
steps adequately, or to implement these steps properly. Errors due to all such
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defects can be observed among novice students, and sometimes even among
more expert individuals.

3. GOOD INTERPRETATION OF SCIENTIFIC CONCEPTS

The preceding discussion of several possible modes of interpreting scientific
concepts provides the requisite background to address the following question:
What mode, or combination of modes, is particularly useful (or optimal) for
interpreting scientific concepts? The answer to this question constitutes an
"ideal model" of scientific concept interpretation. The formulation of such an
ideal model is of interest because it identifies important scientific thought
processes, yields a useful comparative basis for examining the concept
interpretations of expert scientists or novice students, and helps to design
instruction for teaching scientific concepts.

An ideal model of scientific concept interpretation may be "prescriptive"
rather than merely descriptive (Heller & Reif, 1984). In other words, it need not
necessarily mimic what experts do nor merely assume that experts perform
optimally, but may be based on a more general analysis of the thought
processes needed to interpret scientific concepts. Accordingly, the following
paragraphs examine some essential criteria that must be satisfied if scientific
concept interpretation is to be reliably effective as well as efficient. An attempt
to specify how these criteria can actually be met then leads to the formulation of
an ideal model of good scientific concept interpretation.

3.1 Issues of Scientific Effectiveness

The central goal of science or mathematics is to invent conceptual structures
allowing the most parsimonious prediction and explanaticn of the largest range
of phenomena (directly observable phenomena in the case of a science, purely
symbolic phenomena in the case of mathematics).

Accordingly, the individual concepts, used as building blocks of these
conceptual structures, must be capable of satisfying the following essential
requirements: (1) They must be specified explicitly and unambiguously to
ensure that all predictions are definite and clearcut, and that well-specified
meanings are assigned to the words used for communication between
scientists. (2) They must be sufficiently precise to make fine discriminations and
to achieve predictions of any desired degree of precision. (3) They must be
consistent so as to avoid contradictory predictions or paradoxes. (4) They must
be very generally applicable to ensure that predictions and explanations can be
achieved in the most parsimonious way.

Scientific concepts need not always satisfy these criteria in all contexts.
However, they must be capable of refinement to the point where they an satisfy
these criteria to the maximum needed extent.

~1'~~ ~'**.* .
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These stringent requirements can only be met by interpreting scientific
concepts by methods which are sufficiently "formal", i.e., which are deliberately
designed to be systematic, explicit, precise, and general. Such formal methods
are those that rely on explicit feature specifications or procedural specifications.
(By contrast, the other interpretation modes discussed in Section 2 are more
informal, i.e., less explicit and less coherently general.)

Both of these formal methods are useful in complementary ways. A
procedural specification (or "operational definition") provides the most explicit
and detailed specification of a concept. By contrast, a feature specification is
declarative rather than procedural, and hence less explicitly detailed.
Correspondingly, it is usually also more compact, more easily remembered, and
sometimes more transparent in revealing general characteristics of a concept
(characteristics that may be obscured by the very details of a procedural
specification). However, considerable elaboration and problem solving may be
required to use a feature specification to interpret a concept in particular
instances. (Nor is it possible to avoid the problem of translating a declarative
description of a concept into interpretive procedures. For the validity of scientific
statements can only be assessed by specifying what one must ultimately do to
determine whether statements involving the concept are true or false.)

3.2 Issues of Efficiency

When properly elaborated and implemented, the preceding formal methods
can be sufficient to ensure the reliably effective interpretation of scientific or
mathematical concepts. However, the systematic implementation of these
methods is fairly slow and requires appreciable mental effort. Hence these
methods alone are inefficient or impractical for carrying out many of the human
thought processes needed for scientific work.

Such considerations of efficiency are important for the following reasons: (1)
Scientific concepts are used predominantly for solving scientific problems and
making numerous inferences. If the thought processes required to interpret
individual scientific concepts are too slow and laborious, there is not enough
mental capacity left to deal with the more complex reasoning processes needed
for problem solving. (As an analogy, it would be impossible to reed and
comprehend a scientific article if slow and deliberate processing would be
required to decode and interpret individual words.) (2) Great unambiguity and
precision are not always required in scientific work. If they are not, it is wasteful
to resort to unnecessarily formal methods of concept interpretation. (3) Even if
unambiguous precision is ultimately required, it is often strategically best to start
with vague descriptions and then to refine these by successive approximations.

To achieve such cognitive efficiency, it is useful to have available much
more extensive knowledge than that provided by mere formal definitions. Such
knowledge should be entailed and derivable rom more formal knowledge, or
should at least be consistent with it. However, as a result of past familiarity and
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use, such knowledge should have become compiled (Anderson, 1982) so as to
stored in memory in a form where it can be quickly retrieved without the need for
much conscious processing. The elements of such compiled knowledge
provide special cognitive building blocks whose retrieval can short-circuit the
need to resort to more formal concept-interpretation processes. Concept
interpretation can thereby become fast and effortless.

Such useful compiled knowledge includes all that used to interpret concepts
by the more informal methods discussed in Sections 2.1 through 2.3. For
example, a well-classified knowledge of various types of cases can make
concept interpretation far quicker and easier than resort to a general definition
which needs to be laboriously instantiated A knowledge of some well-selected
standard cases helps to deal with important situations and with other instances
that can be easily compared with them. More fragmentary knowledge about
various special cases allows one to recognize immediately familiar instances of
a concept Such fragmentary knowledge can also usefully include specific
warnings about likely errors that should be avoided during concept
interpretation.

Such compiled knowledge constitutes "intuitive scientific knowledge" which
facilitates concept interpretation by recognition or analogical processes which
are quick and effortless (although lacking the precision and coherence of more
explicit interpretations.). Of course, the utility of this knowledge depends
crucially on the extent to which it is consistent with formal scientific concept
specifications and is adequately discriminated from other intuitive knowledge
(e.g., everyday knowledge) which may be inconsistent with it.

The cognitive demands of concept interpretation can be further reduced by
exploiting the flexibility provided by exploiting various descriptions. For
example, concept interpretation can often be appreciably facilitated by
expressing the relevant knowledge in terms of various symbolic representations
(e.g., verbal, algebraic, pictorial...).

3.3 "Ideal" Model of Concept Interpretation

The preceding discussion suggests that the interpretation of scientific or
mathematical concepts is best achieved by a combination of formal and
informal interpretation modes. Formal modes, based on explicit procedural or
feature specifications of the kind described in Section 3.1, ensure that scientific
concepts are interpreted in a fashion that is reliably unambigous, precise, and
consistent. But more informal interpretations, based on compiled knowledge
and more implicit proceses of the kind described in Section 3.2, facilitate more
efficient human thought processes on scientific tasks.

According to the proposed ideal model of good scientific concept
interpretation, these kinds of formal and informal knowledge are to be used
jointly in the following way:

..:,..,.....,.. .. . ..j . . . .. . ,. ... , . , ,... .,. .-, .,,.,
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If one encounters a familiar situation, it is most efficient to interpret the
concept by quick informal processes relying on compiled knowledge. If there
are any reasons to doubt the result or to guarantee its correctness, one can then
check this result by using more formal interpretation methods.

If one encounters a situation which is unfamiliar, or if one needs to correct
errors or to resolve inconsistencies, or if one wants to make general inferences,
then it is usually best to interpret the concept systematically by a formal
interpretation method. As a check of consistency, the result may then be
compared with available compiled knowledge.

In addition, concept instances may be indirectly identified by inferences from
principles relating the concept to other concepts in a larger knowledge
structure. For example, instead of reverting directly to any definitional
knowledge about "acceleration", values of the acceleration may also be inferred
from motion principles that relate acceleration to the concept of "force".

These formal and informal modes of concept interpretation will be
specifically illustrated in Section 4 for the physics concept "acceleration".

3.4 Comparisons with Exoert and Novice Interp~retations

The preceding ideal model of good scientific concept interpretation
approximates the behavior of expert scientists. The main difference is that
experts cannot always fully articulate their formal concept interpretation
knowledge, although their concept interpretations are usually consistent'with it.
As a result, experts occasionally make wrong inferences, sometimes run into
paradoxes or inconsistencies, and often may not be able to explain some
concepts clearly to students.

Novice students interpret scientific concepts in ways that depart appreciably
from ideal behavior. They often base their concept interpretations on highly
fragmented knowledge used in intuitive ways. This knowledge is often vague
and partially inconsistent with scientific conceptions, reflecting instead various
lay notions acquired in daily life or misleading conceptions aquired in prior
schooling. Formal specifications of scientific concepts are rarely used and,
even if they can be stated, they can often not be adequately interpreted.

The preceding comments will also be illustrated in the next section for the
specific case of the concept "acceleration".
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4. EXAMPLE: THE CONCEPT "ACCELERATION"

The general issues discussed in the preceding sections can be better
understood by being illustrated in the case of a particular concept. This section
discusses, therefore, the physics concept "acceleration". This concept is typical
of the many property concepts encountered in the physical sciences or
mathematics. It is a good candidate for investigation because it is a fairly ,"
elementary concept, yet involves complexities representative of more
sophisticated scientific concepts. "Acceleration" is also a concept of
fundamental importance in Newtonian mechanics. Furthermore, cognitive
studies of this concept have practical importance for instruction since many
students experience great difficulties in learning this concept and often keep
misinterpreting it for a long time.

4.1 Good Concept Interpretation

As discussed in Section 3, good interpretation of a scientific concept
involves the combined use of formal interpretation knowledge and less formal
compiled knowledge. The following paragraphs illustrate these kinds of
knowledge in the case of the concept "acceleration".

Formal Interoretation knowledge. A declarative feature specification of
the concept is provided by the qualitative statement that "acceleration is the rate
of change of velocity with time". This specification can be expressed in precise
quantitative form by the formula a = dv/dt (where a is the acceleration of the
particle of interest, v is its velocity, and t is the time - and where the bold-faced
letters denote quantities which are vectors, i.e., which are characterized jointly
by a magnitude and a direction).

Such a declarative specification becomes clear and explicit if it is elaborated
by a procedure specifying how to identify or find the acceleration. Such a
procedural specification consists of the five following major steps illustrated in
Figure 5: (1) Identify the velocity v of the particle at the time t of interest. (2)
Identify the velocity v' of the particle at a slightly later time V. (3) Find the
velocity change Av = V'-v of the particle during the short time interval At = t'-t.
(4) Divide Av by At to find the ratio Av/At. (5) Imagine that the time t' is chosen
sufficiently close to the time t so that the time interval At becomes infinitesimally
small. (Denote the corresponding infinitesimal changes At and Av by dt and
dv.) Find the limiting value dv/dt of the ratio Av/At, and call it the "acceleration of
the particle at the time t".

Insert Figure 5 about here

This procedural specification makes apparent the great complexity of the
concept "acceleration" (a complexity almost totally hidden by the compact
formula a = dv/dt or the equivalent verbal statement that "acceleration is the rate
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of change of velocity"). In particular, the procedure presupposes considerable
prerequisite knowledge about vectors, about the concept "velocity", and about
the notion of a limit. It makes explicit a complex process for comparing one
velocity with another (both in magnitude and direction) and for finding a limiting
case. Furthermore, the implementation of some steps in the procedure requires
several subsidiary steps (such as those needed to subtract two vectors to find
the change of velocity, or those needed to carry out the limiting process
specified in the last step). An appreciation of these complexities makes it easy
to understand why students find it so difficult to interpret the scientific concept
"acceleration".

Useful compiled knowledge. As discussed in Section 3, the
interpretation of scientific concepts can be greatly facilitated by various kinds of
compiled knowledge. Although this knowledge can be derived from the formal
definition of the concept, it is useful if it is directly stored so as to be ret.ievable
without much processing. In the case of "acceleration", such compiled
knowledge includes the following:

Knowledge about various tyeQo a corresponding to different ways
that a particle can move (i.e., different ways that its velocity can change). These
cases can be classified into the following types: (1) If a particle moves along a
straiaht path with constant, increasing, or decreasing "speed" (i.e., magnitude of
velocity), its acceleration is zero in the first case; non-zero and directed along
the velocity in the second case; and non-zero and directed opposite to the
velocity in the third case. (2) If a particle moves along a curved path, its
acceleration is non-zero and directed toward the concave side of the path.
Furthermore, if the particle's speed is constant, increasing, or decreasing, the
direction of its acceleration is perpendicular to its velocity in the first case; at an
angle less than 90" in the second case; and at an angle greater than 90" in the
third case.

The preceding compiled knowledge allows one immediately to determine
the qualitative properties of the acceleration in any particular instance, without
needing to revert to the formal definition of the concept. Note that these
important properties of the acceleration are not apparent from the definition of
the concept without engaging in substantial reasoning processes. (Indeed,
these properties seem counter-intuitive to most novice students.)

Compiled knowledge about certain standard cases is also very useful. For
example, one important standard case is that of circular motion with constant
speed. The corresponding knowledge is that the acceleration in this case is
directed toward the center of the circle and that its magnitude if v2/r (where v is
the speed of the particle and r the radius of the circle). This compiled
knowledge can then be used, without going back to the formal definition of the
acceleration, as a standard of comparison to deal also with various related
cases (e.g., motion with constant speed along w curved path, since any such
path can be locally approximated by a circular arc).
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Other more fragmentary knowledge also facilitates the interpretation and use
of the acceleration concept. Such knowledge includes information about
miscellaneous special cases (e.g., the fact that the acceleration is non-zero at
the top of the path of a vertically projected particle). More importantly, it
includes special caveats about likely errors (e.g., warnings not to confuse the
scientific concept "acceleration" with the lay concept denoted by the same
name, or warnings that the acceleration can be non-zero even if the speed of a
particle is zero or remains constant).

Finally, Section 3.3 mentioned that alternate descriptions can often facilitate
concept interpretation. Thus the acceleration, like any vector, can also be
described in terms of numbers, i.e., by its components along convenient
directions. Such a redescription leads to the following compiled knowledge: A
change in the magnitude v of the velocity leads to a component of the
acceleration jng the velocity (equal to dv/dt); a change in the direction of the
velocity leads to a component of the acceleration Deroendicular to the velocity
(toward the concave side of the path and equal to v2/r, where r is the radius of
curvature). This redescribed form of the knowledge is very useful since it allows
quick identification of the qualitative features or quantitative values of the
acceleration, without any need to go back to the formal definition of the concept.

The preceding comments illustrate some of the kinds of knowledge and
thought processes useful for interpreting the concept "acceleration". Without
repeating the general comments of Section 3.3, it should also be clear how joint
use of formal and compiled knowledge can make the interpretation of this
concept both reliably effective and efficient.

4.2 Concept Interpretation of Experts and Novices

Section 3.4 made some comments comparing theoretical ideas about good
concept interpretation with the actual behavior of experts or novices. These
comments can be well illustrated by data obtained from interviews or protocols
of subjects asked to interpret the concept "acceleration".

Expert behavior. The following problem, presented to experts or novices,
is very revealing.

Example 13: Pendulum Problem. A pendulum bob, suspended by a
string from the ceiling, swings back and forth as illustrated in Figure 6a. At the
extreme point A of its swing, the speed of the bob is momentarily zero. As it
descends with increasing speed along a circular arc, the bob passes the point B
and attains its maximum speed when it is a the lowest point C where the string is
vertical. Then the bob continues moving with decreasing speed, going through
the point D and finally reaching the extreme point E where the speed of the bob
is again momentarily zero.

At each of the points A, B, C, D, and E, is the acceleration of the bob zero or
not? If not, draw an arrow indicating its direction.
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Insert Figure 6 about here

* This is seemingly a very simple problem. It deals with the very basic concept
*acceleration" which is ordinarily taught in the first couple of weeks of any
introductory physics course; it involves the very familiar situation of a pendulum;
very rare to find any expert (physics professor or graduate student) who can I

quickly answer this problem intuitively without engaging in some explicit
reasoning. This indicates that compiled knowledge is quite situation-specific.
All experts have, through years of experience, acquired much compiled
knowledge about acceleration and about pendula (which are favorite textbook
examples). However, they have never, or rarely, encountered the specific
questions asked in Example 13.

The following is a typical expert's solution: He first considers the point C and
states that the acceleration there must be upward toward the point of
suspension (as indicated in Figure 6b) because the situation there is like
circular motion with constant speed. Then he considers the point A and finds the
acceleration there by explicitly comparing the bob's velocity at A and at a
slightly later time. Then he immediately uses symmetry to find the acceleration
at E. Finally, he says that the acceleration at B must have a value somewhere
between that at A and at C (i.e., like that shown in Figure 6b); and that, similarly,
the acceleration at D must have a correspondingly symmetric value somewhere
between that at E and C.

Let us examine more closely this solution which illustrates the combined use
of compiled and formal definitional knowledge. Deliberately deviating from the
order in which the questions are asked, the expert first considers the middle
point C because he can there use his compiled knowledge about the standard
case of circular motion with costn speed. Indeed, he nonchalantly applies
this knowledge to the point C although the speed there is maximu~m and thus
merely instantaneously unchanging. (The similanty between these two cases
seems obvious to the expert, although it is sometimes difficult to understand for
students.) Finding no readily compiled knowledge to answer the question
about point A, the expert there applies systematically the comparison procedure
formally used to define "acceleration". After that, he immediately finds the
accelerations at all other points by means of quick symmetry or interpolation
arguments.

Other experts' solutions differ somewhat from the one just described. For
example, some do not rely on interpolation, but use the definitional procedure
explicitly at both points A and B. Some use the definitional procedure also at
point C, and then check their result by referring to the known case of circular
motion with constant speed. Some first try to find the acceleration at the point A
by identifying the forces acting on the pendulum bob; but, realizing that they
lack requisite information about the magnitude of the force exerted by the string,
they abandon this approach and revert to the procedural definition of
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acceleration. Finally, some solve the problem efficiently by applying their
compiled knowledge about the comonnt of acceleration parallel andIperpendicular to the velocity.

Quite a few physics graduate students, and even some physics professors,
make mistakes and arrive at wrong answers. Indeed, some experts'
performance resembles that of novices. Such observations indicate that
noinal[ experts (i.e., persons designated as "expert" by virtue of their degrees,
titles, or positions) can differ very widely in their actual competence. (To
paraphrase George Orwell, some experts are much more equal than others).
This should be a warning about the interpretation of many cognitive studies
where "experts" are selected by purely nominal criteria, without specifying
adequately the nature of their actual expertise.

Novice behavior. Novices' interpretation of scientific concepts reflects
knowlege which is fragmented, inconsistent, and imprecise. Important
discniminations are often ignored or forgotten. Formal definitions are rarely
invoked and, if they are, they are often inadequately implemented. The
pendulum problem of Example 13 can again be used to illustrate these
remarks.

When this problem is presented to students (even those having completed
mechanics courses where acceleration was extensively studied and used), it
evokes a great variety of responses. The following are some examples: (1)
Many students claim, with considerable assurance, that the acceleration of the
pendulum bob at the point A is zero because the speed of the bob there is zero.
(2) Some students say that the acceleration of the bob at A and at B is tangent
to the path of the bob (directed a~ its velocity at these points), and that the
acceleration of the bob at points E and D is similarly tangent to the path
(directed opposite to its velocity at these points. (3) These students often also
assert that the acceleration at the point C is zero. Some of the following
reasons are used to justify this answer: The speed of the bob there does not
change; the bob there does not move along the string because the string does
not stretch; the force on the bob there is zero because the upward force exerted
by the string balances the downward force by gravity. (4) A few students say
that the acceleration at all the points is directed radially toward the point of
suspension because the bob moves around a circular arc. (5) Other students
simply claim that the acceleration at all points is directed downwards because
of gravity.

All these responses are incorrect. A detailed analysis of the particular errors
and misconceptions reflected by these responses is of interest, but is peripheral
to the main focus of this paper. Here it is only worth pointing out tL= the
students try to answer these questions about acceleration. Note that these
questions do not~ evoke appeal to a definition of this concept or to other
systematic knowledge. Students invoke, instead, various knowledge fragments
associated with the notion of acceleration. Because this knowledge is
fragmentary, and thus not constrained by the consistency requirements of a

Z
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more coherent knowledge structure, it is often applied inappropriately. In
particular, important discriminations are often not made and crucial validity
conditions are ignored. Furthermore, confusions and misconceptions are
caused by various knowledge fragments acquired in everyday life or in prior
science instruction.

Similar commants seem to describe the students, observed by Trowbridge
and McDermott (1981), who were asked to interpret the acceleration concept in
the simple case of linear motion. They are also consistent with our protocols of

* students asked to determine the acceleration in more complex cases. For
example, students commonly confuse the properties of acceleration with those
of velocity. They often fail to pay attention to changes in the direcion of the
velocity, e.g., they attribute =~.acceleration to a particle traveling with constant
speed around a curved path. (This error is, of course, encouraged by confusion
with the lay notion of acceleration which describes merely increases in speed.)
They commonly fail to discriminate between velocity and a chng of velocity.
They often claim that the acceleration of a particle moving around a circle is
always directed toward the center (thus ignoring the validity condition specifying
that this result is only true if the speed of the particle is constant). Many other
examples could me mentioned.

Yet, most students "know" the scientific definition of acceleration, i.e., they
can readily state that "acceleration is the rate of change of velocity" or quote the
precise definitional formula a = dv/dt. However, they rarely appeal to this
definition, nor do they know how to interpret it adequately. The pendulum
problem of Figure 6 provides again an example. When students claim that the
acceleration of the bob at the point A is zero, they are asked to reexamine their
answer by explicitly applying the definition of acceleration a = dv/dt; indeed,
this formula is even written out for them in the elaborated form a = ('v/t-)
[limit as t' --> t]. Some of these students persist, nevertheless, in saying that the
acceleration at A is zero. It is only when they are led step-by-step through a
procedure for interpreting the formula (i.e., when they are first asked to identify
the velocity v, then to identify the velocity V' at a slightly later time, then to find
the difference V'-v, ... ) that they realize that the acceleration at A is nQj zero.

The preceding observations indicate an important point. Most experts
readily translate a declarative definition of a concept (such as a = dv/dt) into the
procedure necessary for its interpretation. However, many students do not or
cannot do this, or don't do it systematically enough to interpret a concept
reliably.

5. DISCUSSION AND INSTRUCTIONAL IMPLICATIONS

The preceding pages identified some centrally important questions about
the interpretation of scientific or mathematical concepts. Then they attempted to
answer these questions by examining various ways of interpreting such
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concepts, by specifying ways that are both reliably effective and efficient, and by
comparing these with the behavior of expert scientists or novice students.

The discussion restricted itself merely to basic interpretation processes
whereby instances of scientific concepts can be identified or constructed.

*1~ Nevertheless, the discussion was fairly lengthy, revealed more complexities
than one might naively have expected, and illuminated many reasons why
students experience difficulties and make frequent mistakes. This concluding
section comments on the relevant concerns from a broader perspective. Thus it
begins by examining more fully the complexities involved in using and learning
scientific or mathematical concepts. Then it identifies broader issues involved
in the interpretation of scientific concepts and outlines some useful directions for
future investigations. Finally, it points out implications of the present work to the
design of improved methods for teaching scientific concepts.

5.1 Comple2xities of Scientific Conceo~ts

Scientific concepts are, in many respects, similar to the "lay concepts" used
in everyday life. In both cases, concepts are used as basic building blocks of
conceptual structures permitting people to explain or predict diverse
phenomena (whether in scientific work or in daily life). In the words of Einstein,
"the whole of science is nothing more than a refinement of everyday thinking".
However, this refinement is often very substantial and thus gives rise to some
major differences between lay concepts and scientific ones. As the following
remarks indicate, these differences lead to some particular complexities of
scientific concepts - and to corresponding difficulties in using or learn ing such
concepts.

Lay concepts are used in the naturalistic context of everyday life with the
implicit goal of ensuring adqut human functioning in daily activities. This
goal can be attained with concepts which are specified somewhat ambiguously
and vaguely, which may lead to occasional inconsistencies, or which may be
used in context-dependent and partially incoherent ways. Such requirements
can be adequately satisfied by specifying the meanings of everyday concepts
implicitly by the contexts in which they are used, rather than by formally explicit
definitions. Often such concepts can also be efficiently identified by
comparisons with implicit prototypes, with heavy reliance on recognition
processes and analogies (Rosch, 1975, 1978).

By contrast, scientific or mathematical concepts are used in scientific
domains which are deliberately designed by humans, i.e., which are "artificial"
(in the sense used by Simon, 1981). These scientific pursuits are undertaken
with the explicitgoQa[ of inventing conceptual structures capable of optimum
inferencing power, i.e., of achieving the most parsimonious explanation and
prediction of the largest range of phenomena.

Explicit pursuit of optimum inferencing imposes some exacting requirements
different from those needed to attain satisfactorily the more implicit goals of
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everyday life. In particular, to make the most precise and far-ranging
predictions, it is essential to use concepts which can be specified with minimum
ambiguity, maximum precision, maximum mutual consistency, and highest
generality. To satisfy such requirements, it is necessary to use special, and
sometimes quite sophisticated, cognitive means different from those used in
everyday life. As a result, particular complexities and difficulties arise at several
levels.

For example, fine discriminations must often be made to ensure that
concepts are defined unambiguously and precisely (and distinguished from
related concepts in daily life). Scientific concepts are often specified quite
abstractly to attain great generality; but this abstractness must be achieved
without vagueness since a concept needs to be unambigously interpretable in
any specific instance. Concepts must also be used consistently and coherently
throughout very broad domains. Furthermore, a very careful use of language
and of other symbolic representations is needed to ensure that all symbols are
unambigously related to their referents and to each other. All the preceding
requirements impose special cognitive demands different from those of daily life
and sometimes appreciably more difficult.

In addition, the differences between science and daily life lead to
complexities at the Mn~.cognitive level, i.,e. at the level of understanding
adequately the nature of science and the thought processes required in this
domain. For example, familiar everyday words often turn out to be scientifically
meaningless because they are too ambiguously defined, not clearly relatable to
any observable phenomena, or not useful for explanatory or predictive
purposes. On the other hand, new scientific concepts and corresponding words
may be freely invented, provided only that this can be done consistently and is
found to be scientifically useful. Furthermore, deliberate active effort is often
required to learn a new scientific concept so that it can be interpreted reliably,
precisely, and with intuitive ease. By contrast, many concepts in everyday life
are spontaneously acquired over longer times with less conscious
deliberateness and less concern for precision; and many concepts learned in
school are all too often merely memorized without becoming flexibly
interpretable.

These general characteristics of scientific concepts are ordinarily not
recognized by students, nor are they usually explicitly taught. Indeed, students
approach their study of scientific concepts with implicit mental models about the
nature of science and about the requisite thought and learning processes.
These mental models, derived from everyday experience where they are
reasonably adequate, are often quite naive and inappropriate in scientific
domains. They are also probably even more resistant to change than students'
mental models about the physical world. They can crucially determine how
students learn and how they direct their attention -and they can thus cause
subtle and far-reaching difficulties for students' acquisition of scientific concepts.

In summary, there are many substantial reasons why scientific and
mathematical concepts are difficult to learn or teach. Efforts to understand these
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reasons in greater detail offer, therefore, also the prospects of devising better
ways of reducing these difficulties.

5.2 Further Issues of Concept Interpretation

Extensions of present work. It would clearly be useful to undertake
more detailed analyses and to gather more extensive data on the thought
processes involved in various ways of interpreting scientific concepts. For
example, my collaborators and I have been gathering extensive protocol data
on subjects asked to interpret the concept "acceleration" in various situations. A
partial analysis of these data has yielded some valuable insights, but has also
suggested modified approaches and some further questions for investigation.
Work dealing with the interpretation of other scientific or mathematical concepts
(e.g., "force", "area", ... ) would also have obvious utility, both in its own right and
in establishing the generality of any conclusions. In all such work, the emphasis
should not just be on what conceptions or misconceptions are exhibited by
various subjects, but on how they think and use their knowledge to arrive at
their interpretations.

The present paper has focused only on the most basic concept-
interpretation knowledge. But, as pointed out elsewhere (Reif, 1985), other
ancillary knowledge is also important in facilitating the interpretation of scientific
concepts and such knowledge merits more extensive study. For example, such
ancillary knowledge Includes that needed to identify all the independent
variables required for the unambiguous specification of a property concept. It
also includes that needed to describe the same scientific concept in various
symbolic representations, to translate between such representations, and to
choose the representation most likely to be useful for particular purposes.

Broader Issues of concept Interpretation. In the attempt to limit the
scope of the present investigation to manageable proportions, the discussion in
the previous pages has examined the interpretation of individual scientific
concepts without considering adequately their interaction with more extensive
knowledge. But the effective interpretation of a scientific concept depends
ultimately on the larger scientific knowledge structure within which the concept
is embedded. The following remarks point out some of the resulting broader
issues which, although more complex, are ultimately quite important and
deserve investigation.

A new scientific concept is formally defined in terms of other previously
defined concepts and/or in terms of certain primitives (primitive undefined
concepts in mathematics, or primitive concepts directly related to some specific
observables in a science). In this way the concept is given a deliberately
"assigned meaning" which ensures its unambiguous specification and permits
clear communication among scientists. (Indeed, some scientific concepts, such
as "meter" or "second", are assigned specific meanings ratified by formal
international conventions.) However, the initial introduction of the concept is
motivated by particular characteristics of a larger scientific knowledge structure.

%". .. . -. . . . . . - .. . . . .. . . . . . . ,
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Furthermore, once the concept has been introduced, it becomes complexly
related to most of the other concepts in this structure.

It is this web of interrelationships which provides the concept with a rich
"contextual meaning" extending far beyond its formal definition. Indeed, the
validity and utility of a scientific concept are ultimately determined by the extent
to which the concept contributes to an overarching knowledge structure which is
internally consistent - and capable of parsimonious and correct inferences
about all the phenomena which it is intended to describe. Furthermore, the
eficieni interpretation of a concept requires that significant portions of this larger
knowledge structure have become compiled so that the concept can often be
interpreted quickly with intuitive ease.

A concept is usually related to the following kinds of other knowledge in a
larger knowledge structure: (1) The primary concepts in terms of which the
concept is formally defined - and thus indirectly also all the other concepts
related to these. (For example, in the case of "acceleration", these primary
concepts include "velocity" and "time", and indirectly concepts such as
"position", "vector", ... ). (2) The implications of the concept's definition for
special cases and for the properties of the concept. (For example, the definition
of acceleration entails special implications for the cases of motion along straight
lines or curves.) (3) Implications and principles which relate the concept to
other concepts. (For example, Newton's motion principle ma = F relates the
acceleration a to the concept "force" F.) (4) Specifications of the kinds of
measurements which (in a science) relate the concept unambiguously to
observable phenomena.

These remarks can best be illustrated for a fairly complex scientific concept,
such as "absolute temperature". (1) This concept is formally defined in terms of
the rate of change of the "entropy" of a system with respect to its "energy".
(Each of these latter two concepts is quite complex and dependent on a
knowledge of very many other more basic concepts.) (2) Implications of this
general definition include the special cases of low and high absolute
temperatures, of zero temperature (i.e., "absolute zero"), and of negative
absolute temperature (a possible case which seems naively strange). They
also include conclusions about how the absolute temperatures of systems are
related to the direction of energy flow between them. (3) More far-reaching
implications relate the absolute temperature to other concepts (like "pressure")
which describe gases and liquids, to concepts (like "magnetic susceptibility")
which describe magnetic materials, and to many others. Indeed, it is only
because the "absolute temperature" concept can consistently relate the
properties of fluids, of magnetic materials, and of many other macroscopic
systems, that this concept is valid, useful, and also intuitively meaningful. (4)
Specifications which relate the absolute temperature to observable
measurements are quite complex. Furthermore, completely different
measurement methods are required to determine the absolute temperature
near room temperature, near absolute zero, or at very high temperatures.
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This paper's discussion of concept interpretation has dealt with the

importance of relating a scientific concept carefully to the primary concepts

involved in its formal specification; it has also pointed out the importance of
compiled knowledge about special cases (standard cases, classified types of

inalarger knowledge structure, nor some of the subtle questions which may
aiein relating a concept to directly observable phenomena. Such issues

certainly deserve attention in a more complete study of concept interpretation.

Section 5.1 mentioned how metacognitive knowledge about the nature of
science, and about the thought processes in this domain, can affect how
students interpret and learn scientific concepts. Anecdotal evidence suggests

thtthe resultant effects can be subtle and important. Hence the role of such
metacog nitive knowledge also merits future investigation.

5.3 ImoI2catlons for Teaching

General guidelines. The proposed model of good concept interpretation
suggests the following general guidelines for teaching scientific or

mathematical concepts:

(1) Teach explicitly k~f.formal interpretation knowledge and useful
compiled knowledge about a concept. This guideline is frequently violated.
Mathematically oriented courses often define concepts formally without
developing students' intuitive knowledge about them. Conversely, basic
science courses often introduce concepts by vague verbal statements or
analogies, without providing clear definitions. (Such lack of clarity contributes
to students' confusions and misconceptions.)

(2) To ensure that a scientific concept is reliably interpretable, teach students
explicit procedures for identifying or constructing the concept. Make sure that
students can invoke such procedural specifications, can describe them
adequately, and can implement them in particular instances.

(3) Make sure that students' compiled knowledge about a scientific concept
is both correct and intuitive. This requires that their compiled knowledge is
consistent with formal scientific knowledge and can be checked against it by the
students themselves. It also requires that students have adequate familiarity
and practice with particular instances of the concept, and have compared them
sufficiently with their preexisting notions, so that compiled scientific knowledge
is automatically retrieved without interference from everyday intuitive
knowledge.

(4) Allow adequate time for students' learning of scientific concepts, so that
they have a chance to cope with the inherent cognitive complexities. In
particular, give them opportunities to interpret a new scientific concept in many
diverse simple cases beor asking them to apply the concept in more complex
problems.
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Many science and mathematics courses do not abide by these guidelines,
for reasons which are easy to understand. Since instructors have large
amounts of tacit knowledge and find it easy to interpret scientific concepts, they
are unaware of the full cognitive complexities faced by students. Furthermore,
they are not inclined to spend too much time on seemingly elementary scientific
concepts when there are so many more interesting scientific issues to be
discussed and when there is so much curiculum to be "covered".
(Unfortunately, few instructors know about the recent studies, cited in the
introduction, investigating students' actual knowledge of the scientific content
"covered" in their courses. They might then realize how often students'
knowledge is superficial, not effectively usable, and little more than a flimsy
house of cards riddled with misconceptions.)

SDecific Instructional methods. The preceding guidelines can be used
as a basis for designing specific instructional methods for teaching scientific
concepts more effectively. For example, together with some collaborators, I
have been studying an instructional model consisting of the following
successive stages: (1) Introducing a new concept by specifying some of its
general features and contrasting them with those of other pre-existing concepts.
(2) Presenting an explicit procedure specifying the concept, and then teaching
the student to interpret the concept systematically by invoking and implementing
this procedure. (3) Letting the student actively apply this procedure in a variety
of cases that are either typical or likely to lead to errors (because of the need for
fine discriminations or because of the student's conflicting prior knowledge).
The student thus gets carefully designed practice and begins to compile useful
knowledge. (4) Teaching the student to detect and correct interpretation errors.
(5) Finally, teaching the student how to interpret a concept rapidly by using his
or her compiled knowledge, and then checking and modifying that knowledge if
necessary.

This instructional model, elaborated in much greater detail than indicated in
the preceding sketch, has been specifically worked out for the concept
"acceleration". It has also been partially implemented in the form of a computer
program (so as to permit testing and refinement of the instructional model with
good control of the experimental variables). This work will be the topic of a
future paper.

Irrespective of these particular teaching implementations, there is
considerable general interest in translating a cognitive analysis of scientific
concept interpretation into specific instructional models. (1) From a research
point of view, experimental investigations of such models provide severe tests
of the underlying cognitive assumptions upon which they are based. They also
provide a good testbed, in a comparatively simple domain, for formulating and
testing some general theoretical principles of instruction. (2) From a practical
point of view, they promise to lead to more principled and reliably effective
methods for teaching scientific or mathematical concepts. Progress toward this
goal would be highly valuable since such concepts are basic prerequisites for
any scientific understanding and are traditionally quite difficult to teach.
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Assistant for Personnel Dr. Stellan Ohlsson
Logistics Planning, Learning R & D Center
NAVOP 987H University of Pittsburgh

5D772, The Pentagon 3939 O'Hara Street
Washington, DC 20350 Pittsburgh, PA 15213

Dr. Richard E. Nisbett Office of Naval Research,
University of Michigan Code 1142
Institute for Social Research 800 N. Quincy St.
Room 5261 Arlington, VA 22217-5000
Ann Arbor, MI 48109

Office of Naval Research,
Dr. Donald A. Norman Code 1142PT
Institute for Cognitive Science 800 N. Quincy Street
University of California Arlington, VA 22217-5000
La Jolla, CA 92093 (6 Copies)

Director, Training Laboratory, Psychologist
NPRDC (Code 05) Office of Naval Research

San Diego, CA 92152 Branch Office, London
Box 39

Director, Manpower and Personnel FPO New York, NY 09510
Laboratory,
NPRDC (Code 06) Special Assistant for Marine

San Diego, CA 92152 Corps Matters,
ONR Code OOMC

Director, Human Factors 800 N. Quincy St.
& Organizational Systems Lab, Arlington, VA 22217-5000
NPRDC (Code 07)

San Diego, CA 92152 Psychologist
Office of Naval Research

Fleet Support Office, Liaison Office, Far East
NPRDC (Code 301) APO San Francisco, CA 96503

San Diego, CA 92152
Dr. Judith Orasanu

Library, NPRDC Army Research Institute
Code P201L 5001 Eisenhower Avenue
San Diego, CA 92152 Alexandria, VA 22333

Commanding Officer, Dr. Jesse Orlansky
Naval Research Laboratory Institute for Defense Analyses

Code 2627 1801 N. Beauregard St.
Washington, DC 20390 Alexandria, VA 22311

Dr. Harry F. O'Neil, Jr. Prof. Seymour Papert
University of Southern California 20C-109
School of Education -- WPH 801 Massachusetts Institute
Dept. of Educational of Technology

Psychology and Technology Cambridge, MA 02139
Los Angeles, CA 90089-0031
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Dr. Roy Pea Dr. Peter Polson
Bank Street College of University of Colorado

Education Department of Psychology
610 W. 112th Street Boulder, CO 80309
New York, NY 10025

Dr. Steven E. Poltrock
Dr. Douglas Pearse MCC
DCIEM 9430 Research Blvd.
Box 2000 Echelon Bldg #1
Downsview, Ontario Austin, TX 78759-6509
CANADA

Dr. Harry E. Pople
Dr. Nancy Pennington University of Pittsburgh
University of Chicago Decision Systems Laboratory
Graduate School of Business 1360 Scaife Hall
1101 E. 58th St. Pittsburgh, PA 15261
Chicago, IL 60637

Dr. Sukai Prom-Jackson
Military Assistant for Training and 1421 Massachusetts Ave., NW

Personnel Technology, #602
OUSD (R & E) Washington, DC 20005

Room 3D129, The Pentagon
Washington, DC 20301 Dr. Joseph Psotka

ATTN: PERI-iC
Dr. Ray Perez Army Research Institute
ARI (PERI-II) 5001 Eisenhower Ave.
5001 Eisenhower Avenue Alexandria, VA 22333
Alexandria, VA 2233

Dr. Lynne Reder
Dr. David N. Perkins Department of Psychology
Educational Technology Center Carnegie-Mellon University
337 Gutman Library Schenley Park
Appian Way Pittsburgh, PA 15213
Cambridge, MA 02138

CDR Karen Reider
Dr. Nancy Perry Naval School of Health Sciences
Chief of Naval Education National Naval Medical Center

and Training, Code 0OA2A Bldg. 141
Naval Station Pensacola Washington, DC 20814
Pensacola, FL 32508

Dr. Frederick Reif
Dr. Tjeerd Plomp Physics Department
Twente University of Technology University of California
Department of Education Berkeley, CA 94720
P.O. Box 217
7500 AE ENSCHEDE Dr. Lauren Resnick
THE NETHERLANDS Learning R & D Center

University of Pittsburgh
Dr. Martha Polson 3939 O'Hara Street
Department of Psychology Pittsburgh, PA 15213
Campus Box 346
University of Colorado
Boulder, CO 80309
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Dr. Jeff Richardson Dr. Sylvia A. S. Shafto
Executive Director National Institute of Education
Center for Applied AI 1200 19th Street
Campus Box 419 Mail Stop 1806
University of Colorado Washington, DC 20208
Boulder, CO 80309

Dr. Lee Shulman
Dr. Mary S. Riley Stanford University
Program in Cognitive Science 1040 Cathcart Way
Center for Human Information Stanford, CA 94305

Processing
University of California Dr. Randall Shumaker
La Jolla, CA 92093 Naval Research Laboratory

Code 7510
Dr. Andrew M. Rose 4555 Overlook Avenue, S.W.
American Institutes Washington, DC 20375-5000

for Research
1055 Thomas Jefferson St., NW Dr. Miriam Schustack
Washington, DC 20007 Code 51

Navy Personnel R & D Center
Dr. William B. Rouse San Diego, CA 92152
Georgia Institute of Technology
School of Industrial & Systems Dr. Robert S. Siegler

Engineering Carnegie-Mellon University
Atlanta, GA 30332 Department of Psychology

Schenley Park
Dr. Robert Sasmor Pittsburgh, PA 15213
Army Research Institute
5001 Eisenhower Avenue Dr. Edward Silver
Alexandria, VA 22333 Dept. of Mathematics

San Diego State University
Dr. Alan H. Schoenfeld San Diego, CA 92115
School of Education (EMST)
University of California Dr. Zita M Simutis
Berkeley, CA 94720 Instructional Technology

Systems Area
Dr. Janet Schofield ARI
Learning R&D Center 5001 Eisenhower Avenue
University of Pittsburgh Alexandria, VA 22333
Pittsburgh, PA 15260

Dr. H. Wallace Sinaiko
Dr. Marc Sebrechts Manpower Research
Department of Psychology and Advisory Services
Wesleyan University Smithsonian Institution
Middletown, CT 06475 801 North Pitt Street

Alexandria, VA 22314
Dr. Judith Segal
Room 819F Dr. Derek Sleeman
NIE Stanford University
1200 19th Street N.W. School of Education
Washington, DC 20208 Stanford, CA 94305
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Dr. Edward E. Smith Dr. Martin M. Taylor
Bolt Beranek & Newman, Inc. DCIEM
50 Moulton Street Box 2000
Cambridge, MA 02138 Downsview, Ontario

CANADA
Dr. Richard E. Snow
Department of Psychology Dr. Perry W. Thorndyke
Stanford University FMC Corporation
Stanford, CA 94306 Central Engineering Labs

1185 Coleman Avenue, Box 580
Dr. Elliot Soloway Santa Clara, CA 95052
Yale University
Computer Science Department Dr. Douglas Towne
P.O. Box 2158 Behavioral Technology Labs
New Haven, CT 06520 1845 S. Elena Ave.

Redondo Beach, CA 90277" Dr. Richard Sorensen='

Navy Personnel R&D Center Dr. Paul Twohig
San Diego, CA 92152 Army Research Institute

5001 Eisenhower Avenue
Dr. Kathryn T. Spoehr Alexandria, VA 22333
Brown University
Department of Psychology Headquarters, U. S. MarineCorps
Providence, RI 02912 Code MPI-20

Washington, DC 20380
Dr. Robert Sternberg
Department ot Psychology Dr. Kurt Van Lehn
Yale University Department of Psychology
Box 11A, Yale Station Carnegie-Mellon University
New Haven, CT 06520 Schenley Park

Pittsburgh, PA 15213Dr. Albert Stevens

Bolt Beranek & Newman, Inc. Dr. Beth Warren
10 Moulton St. Bolt Beranek & Newman, Inc.
Cambridge, MA 02238 50 Moulton Street

Cambridge, MA 02138
Dr. Paul J. Sticha
Senior Staff Scientist Dr. Keith T. Wescourt
Training Research Division FMC Corporation .
HumRRO Central Engineering Labs
1100 S. Washington 1185 Coleman Ave., Box 580
Alexandria, VA 22314 Santa Clara, CA 95052

Dr. Thomas Sticht Dr. Barbara White
Navy Personnel R&D Center Bolt Beranek & Newman, Inc.
San Diego, CA 92152 10 Moulton Street

Cambridge, MA 02238
Dr. John Tangney
AFOSR/NL LCDR Cory deGroot Whitehead
Bolling AFB, DC 20332 Chief of Naval Operations

OP-112G1
Washington, DC 20370-2000
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Dr. Michael Williams
IntelliCorp
1975 El Camino Real West
Mountain View, CA 94040-2216

Dr. Robert A. Wisher
U.S. Army Institute for the

Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

Dr. Merlin C. Wittrock
Graduate School of Education
UCLA 4

Los Angeles, CA 90024

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Joe Yasatuke

AFHRL/LRT
Lowry AFB, CO 80230

Dr. Masoud Yazdani
Dept. of Computer Science
University of Exeter
Exeter EX4 4QL
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